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B.Sc./B.Sc. B.Ed. (Part-II)
Examination, 2022

MATHEMATICS
Paper - 111

Mechanics

Time : Three Hours] [Maximum Marks : 50
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Note : Answer any two parts from each question. All
questions carry equal marks.
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Equal weights P and P are attached to
two strings ACP and BCP passing over a
smooth peg C. AB is a heavy beam of
weight W, whose centre of gravity is a
feet from 4 and b feet from B, show that
AB is inclined to the horizon at an angle.
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A solid sphere rests inside a fixed rough
hemispherical bowl of twice its radius.

Show that, however large a weight is
attached to, the highest point of the

sphere, the equilibrium is stable.
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b sin’0 = a cosd
Two equal uniform rods 4B and AC, each
of length 2p, are freely joined at 4 and rest
on a smooth vertical circle of radius a. Show
that if 20 be the angle between them, then
b sin’0 = a cosh.
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Find the null point of the planex +y+z=10
for the dyname (X, Y, Z, L, M, N).
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Two forces act, one along the line y =0,
z = 0 and the other along the linex = 0,z = c.
Since the forces are changing, show that
their equivalents, where /, [ ” is the extension

over the natural lengths of the strings.
Surface generated by the central axis is

(x> +)%) 2= ¢y,
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Show that among the null lines of any
system of forces four are generators at
any hyperboloid, two belonging to one
system of generators and two to the other
system.
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A point in a straight line with S.H.M.
has velocities v, and v, when its distance
from the centre are x; and x,. Show that
the period of motion is
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A particle of mass m execute S.H.M. in
the line joining the points 4 and B on
the smooth table and is connected with
these points by elastic strings whose
tension in equilibrium are each 7. Show
that the time of an oscillation is

mil’
n m where [, 1’ are the

extensions of the strings beyond their
natural lengths.
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A point P moving, with constant angular
velocity about O, the equiangular spiral
r=aed, O being the pole of the spiral.
Obtain the radial and transverse
accelerations of P.

ZehTg / Unit-IV
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The maximum and minimum velocities of

a planet revolving around the sun are 30
and 29.2 km/sec respectively. Find the

eccentricity of its orbit.

(b) Teh HU FHAA p?=qr W THHI MY &
el Teh UM IO AT § YHOT Hal
g, @ fag =i fo& fadt fog =
Afenfisss wru, amar B &

O g ¥

A particle is moving in a parabola
p?>=ar with uniform angular velocity
about the focus, prove that its normal
acceleration at any point is proportional
to the radius of curvature of its path at

that point.
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A bead moves along a rough curved wire
which is such that it changes its direction
of motion with constant angular velocity.

Show that a possible form of wire is an
equiangular spiral.

ZehTg / Unit-V
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A particle is projected with velocity V
along a smooth horizontal plane in a
medium whose resistance per unit mass
is u times the cube of the velocity. Show
that the distance it describes in time 7 is
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1
M_V{ (1+2MV21‘)—1} and that its

v

velocity then is /1+2MV21‘ .
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A spherical raindrop, falling freely,
receives m each instant an increase of
volume equal to A times its surface at
that instant, find the velocity at the end
of times 7, and the distance fallen through

in that time.

N
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TfaqM § 1 SUisT TR SEe qU HHiR
cot O =cot P cos ¢ TR U@ B, =l 6
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A particle moves on a smooth sphere
under no forces except the pressure of
the surface, show that its path is given

by the equation cot 6 = cot 3 cos ¢ where
0 and ¢ are its angular coordinates.
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